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Problems of the stability of the set of equilibrium positions of autonomous differential equations, to which the equations of motion 
of mechanical systems with sliding friction can be reduced, are considered (see [1, 2]). The structure of the equations, due to 
the specific features of the system, is taken into account substantially and the general properties of motions, investigated previously 
in [3, 7], and the sets which arise when analysing the equations and which possess the properties of the absolute sector are used. 
© 1999 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

The equations of motion of the mechanical system in question for generalized coordinates q = 
( q l , . . . ,  qk) (written in vector form) are 

A( q)# = q( q, 4) + Qa (q, q) + a r (q, 4, ij) (1.1) 

Here A (q) = [aiy(q)] ~1 is the matrix of the inertia coefficients, QA (q, t~) and g(q, q)  are vector functions, 
representing the active forces, generalized gyroscopic forces, translational inertial forces and other forces, 
and Qr(q,  (t, ~t" ) are generalized friction forces, expressed by the formulae 

[ - f s (qS ,4S ) lNs  Isgnq s, if 4" 4 0  

Qr(q, 4, #) = ~fs (q',  0) I N, I sgn Qr0, if 4 '~ = 0; I Q.rO I> f~(q', 0) I N.~ 

[Qf0, if qS=0;  QTs°l<~fs(qS,O)lNslq, 0 I//s=0 

k (1.2) 

= ~, as , j (q) i lY-[gs(q ,4)+ q,4)],~,=0 
j=l, j~s 

N~ = Ns(t, q, q),  1 <~ s <- k.,  k .  <~ k, where fs(q ~, t~ s) > 0 are the coefficients of  friction, INs I are the 
moduli of the normal reactions, and Q j 0  are the friction forces in the case of relative rest; we assume 
fs = O for s = k .  + l, . . . , k. 

The equations of motion (in the general non-autonomous case) are described in more detail in [1, 
2] and were investigated in [3-7], where the conditions for Eqs (1.1) to be solvable for ~ were obtained 
and they were reduced to the form 

= G(q, 4) (1.3) 

with a, generally speaking, discontinuous function G: f2 ~ R k, defined in a certain region f~ C R 2k, the 
existence of right-sided solutions of (1.3) was proved and their general properties were investigated. 
These conditions (inequalities (3.1) in [2] and inequalities (1.2) in [7]) and also the necessary properties 
of continuity and differentiability of the functions occurring in (1.1) and (1.2) are henceforth assumed 
to be satisfied. 

When using Lyapunov's functions to analyse implicit systems of the form (1.1), difficulties may arise 
when establishing that the derivatives of these functions are sign-definite, by virtue of Eq. (1.1). Here 
we investigate the properties of the solutions of Eq. (1.1) in the region of the set of equilibrium positions, 
which enable us to reduce these difficulties. The solutions are thought of as being right-hand sided. To 
simplify the later notation and proofs, Eq. (1.3) is converted to the form 
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~ = f ( x ) ;  x=(q,q) ,  f = ( G I , G ) ,  Gl= ~ (1.4) 

For each point x e f l  we put 

r = F(x)---a{x ' = (q',:t") e R 2k :q,S.= O, if s e .h e, .fs I N s I>1Qs r° I; 

• t s , . ~ T O  q sgs ~<0, if sed~,  fs lNsl~lQsr° l ,  INsl~0 } 

.~" = ~ ( q ) ~ { s  ~ (1 . . . . .  k , ) : 4 '  = 0} 

where the value of the functionsfs, INs I, Qs TM correspond to (q, q), and the quantity ~ in the expressions 
for INs [ and Q ~  is assumed to be equal to G(q, q). 

We put 

Ss = Ss (x)  a--{x' E ~ :11 x - x '  II < 8}, I'~5 = ~ 8  (x)-a-- SS (x)  r~ l"(x) 

If .S" = 0 or I Ns [ = 0 for all s ~ N, we assume F ~ R 2k. 
We will present some properties of the function f, which will be required later. 

L e m m a  1.1. The following properties hold at each pointx • f) 
1. the function f is locally bounded; 
2. the function f is continuous along the set F(x), i.e. for any ~ > 0 a 8 = 8(e,x) > 0 exists such that 

Ill(x) - f (x ' ) I t  < ~Vx' ~ f~(x); 
3. f(x) r(x); 
4. a locally Lipschitz function Vx exists: R 2k ~ R 1 such that 

Vx(x3 >~ 0; Vx(x3 = 0 ¢:a x '  ~ F(x) (1.5) 

and, if F(x) # R 2k, numbers a = ct(x) > 0 and 8 = 8(x) > 0 exist such that 

D+Vx(x3 < - ctVx' 6 Ss(x)kF(x) (1.6) 

where D+Vx(x ') a= limh,+o[Vx(x, + hf(x')) - V(x')] / h is the right derivative, by virtue of Eq. (1.4). 
Properties 1 and 2 (in a different notation) were established in [5] (Lemmas 1 and 4). Property 3 

follows from (1.2), Lemma 2 [2] and the definition of the sets F. Property 4 was proved in [5] (Lemma 
8) as it applies to the A-solutions of Eq. (1.3), i.e .they are continuous functions, which (in the case of 
autonomous equation (1.3)) satisfy the relations 

D+q(t) = ~(t), II D+il(t)- G(q(t), ~l(t))If<A, Vt ¢ [0,a) 

Here it is only necessary to note that any right-hand sided solution of Eq. (1.4) is also a A-solution of 
Eq. (1.3), while the right (upper right) derivative of a locally Lipschitz function along the right-hand 
sided solution can be evaluated using Yoshizawa's theorem [8]. 

2. A D D I T I O N A L  A S S E R T I O N S  

It follows from (1.5) and (1.6) that for anyx e f), by an appropriate choice of the number 8 > 0, the 
set ~s(x) possesses the property of the absolute sector, namely, the trajectory of any solution with initial 
conditionx(0) ~ f)~(x) remains within f~5(x) for all t I> 0 for whichx(t) e Ss(x). In order to indicate this 
property of the set f)s(x) we will call it the absolute sector, generated by the set F(x) or, more briefly, 
the F-sector with vertexx and radius 8, which always has a form such that for a number 8 > 0 condition 
(1.6) is satisfied. For the case when F(x) = R 2~, the equation f~s(x) = Ss(x) is satisfied, and the radius 
is assumed to be an arbitrary positive number. If F(x) ~ R z~ and 8 > 0 is the radius of the F-sector, 
then any number 8' e (0, 8) is also the radius of the sector, generated by the same set F(x). This obvious 
property will later be used without reservations. In particular, we will always assume that for any x • 
f) the choice of 8 ensures that the condition Ss(x) C f~ is satisfied, where the bar denotes closure of 
the set. It then follows from Theorem 1 [6] on continuability, that any solution x(t),  defined in the right 
maximum interval [0, co) with initial condition x(0) • Ss(x), exists for all t I> 0 for which x(t)  • Ss(x). 
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For  an arbi t rary set M C R 2~ and number  13 > 0 we will deno te  the 13-neighbourhood of  the set M by 
M t~, i.e. M ~ ~= {x' ~ R 2k : d ( x ' , A )  < I~}, where  d is the distance f rom the point  to the set. For  e a c h x  e 
t),  we will deno te  the 13-neighbourhood of  the set F(x) by Fl~(x). 

L e m m a  2.1. Supposex  e t )  and fi = 8(x) > 0 is the radius of  the 13-sector l),(x). Then,  for any numbers  
x > 0, 13 e (0, 5) values z0 e (0, x), 130 e (0, 13) exist such that  for  any solution x(t)  

(x(0) ~ r I~° (x) c~ Sa_~ (x)) ~ (X(Xo) ~ F(x) c~ Sl~ (x(0))) (2.1) 

Proof. Suppose 18 ~ (0, ~5) and z > 0 are arbitrary. By virtue of the local boundedness, the function f is bounded 
in a compact set S~(x). Hence ~0 ~ (0, ~) exists and is so small that for all solutions x(t) 

(x(0) ~ S~_~(x)) ~ (Vte [0,x0], x(t) ~ S#x(0))) (2.2) 

If F(x) = R 2~, (2.1). follows from (2.2) for arbitrary 180 > 0. 
Suppose F ( x ) ,  R "  and ¢t = ct(x) > 0 is a number for which inequality (1.6) holds. Using condition (1.6) we 

choose 180 e (0, 18) so that 

V~(x') < ~tXoVX" ~ r Ih~ ( x )n  S~(x) (2.3) 

will assume that x(t) is the solution with initial condition x(0) ~ r~°(x)NS~_l~(x). It then follows from We (2.2) 
that 

x(t)~ Sa(x(0)), Vt ~ [0,x0] (2.4) 

Ifx(0) e F(x) here, we conclude from (2.4) and the obvious relation So(x)) C Ss(x) andx(t) f),(x), Vt ~ [0, z0], and 
inclusion (2.1) is proved. If x(0) ~ F(x), we obtain from (1.6) and (2.3) 

v,,(.,,'(O) < vx(~O)) - o.t < a('r.o - t) 

for all t > 0, such thatx(t) e S,(x)~F(x). Since the function Vx is non-negative and the inclusionx(t) e S~(x) is satisfied 
in the section [0, %], we obtain a point tl ~ (0, %) such that Vx(X(tl) ) = 0. Thenx(q)  e F(x) andx(t) ~ f2,(x) for 
all t ~ [fi, z0], whence, taking (2.4) into account, we obtain (2.1). 

Everywhere  hencefor th  we will denote  by M C f~ the compact  set which satisfies the condi t ion x e 
M for  each M C F(x). The  last inclusion is obviously always satisfied i f M  is a set of  equil ibrium positions 
of  Eq.  (1.1). 

L e m m a  2.2. For  any e > 0 a e0 ~ (0, E), a finite set of  F-sectors f~si (Xi) with vertices at the points 
xi ~ M and radii B i ~ (0, e) and number  ~'i E (0, ~i) (i E J, J ~ (i = 1 , . . . ,  n))  exist such that  

M c {utaxi (xi):i  ~ J} (2.5) 

and any solution x(t)  possesses the following property:  if 

(x(0) ~ ~x i  (xi) n M e° ) h (Vt  ~ [0, t*), x(t)  ~ M et' ) (2.6) 

for  a certain subscript  i e J and interval [0, t*) (finite or infinite), then 

x ( t ) ~ l u ~ s r ( x i ) ,  i ~ J } ,  Vt~[0 , t* )  (2.7) 

Proof. Suppose e > 0 is arbitrary, Taking into account the compactness of the set M, we cover it with a finite 
number of spheres Se~/2(xi) (i e J), where ~5i ~ (0, e) are the radii of F-sectors with centres at the points xi ~ M. 
Since the function is locally bounded, then, without loss of generality, we can assume that II f(x) tl <- L for all 
x ~ {USm (xi): i ~ J}, where L > 0 is a certain constant. We put rl = min {~5i/4: i e J} and for arbitrary 18i e 
(0, 8i/4), x ~ (0, rl) we denote by 13~/~ (0,183, z~ ~ (0, z) numbers the existence of which for each point xi is established 
in Lemma 2.1. Since the sets Fm(xi) are open, the set 

H I a={c~vll°i (xi):i e J} (2.8) 

is an open neighbourhood of the set M. We put 

Hi~ A- H t caSsi t2(xl), H 2 A={uH~ :i E J} (2.9) 
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Then/-/2 is an open neighbourhood of the set M. Since M is compact, and/-/2 is open, a e0 e (0, e) exists such that 

M en c H 2 (2.10) 

We put ~.i = 38i/4 (i • J). Suppose that, for the solution x(t), condition (2.6) is satisfied for a certain index 
il e J and an interval [0, t*). For all t e [0, t*) the following inclusion is satisfied 

x(t) ~ ~'~8i I (xil) (2.11) 

and inclusion (2.7) is satisfied, and the lemma is proved. 
We will assume that (2.1) is not satisfied for a certain t e [0, t*). Sincex(0) • S~ 1 (Xiz) and the set f28~ 1 (Xit) is a 

F-sector, the greatest point tl and the least point t2, tl < t2 from the interval [0, t*) are obtained, for which 

II x( t  I ) - x i t  II=~,it, IIx(t2)-Xit II=$iz (2.12) 

Here, for all t e [tl, t2) inclusion (2.11) is satisfied andx(t) • M e°. It follows directly from (2.9) and (2.10) that 

M e° C H I, M e° C?. {l'~S~i 12(Xi):i E J} (2.13) 

Hence, we obtain the subscript i2 • J such that 

X(t I ) E S6i 2 12(xi2 )('~H I (2.14) 

Since 0 < 13i2 < ~i2/4, we obtain from (2.14) and the definition of the set H1 

x(t I ) e Sai 2 _[~ n F 15°'2 ( xi2 ) (2.15) 

It follows from (2.12) that [Ix(t1) - x(t2)[I I> 8id4. Hence, the choice of the numbers ~ and %i ensures that 
the inequality t2 - tl > x > xc~2 is satisfied. Now from (2.15) and Lemma 2.1 we obtain x(tl + T~.) • F(xi2)N 

S~i2(x(tl)). Consequently, if we take (2.14) into account we have X(tl + ~2) • C)°2 (xi2). Now, again, if for all 
t • [t 1 + xo/2, t*) 

x(t) e ~8i2 (xi2 ) (2.16) 

then the lemma is proved. 
If this is not so, then taking the point tl + x~ 2 as the initial point, we obtain the greatest point t 3 and the least 

point t4 from the interval [0, t*), t 3 < t4, such that 

I lx ( t3) -x i2  11=~,12, I l x ( t4 ) -x i2  11=8i2 (2.17) 

Here t 3 < tl and inclusion (2.16) is satisfied for all t • [t 3 < t4). It follows from (2.14) and (2.17) that 

II X(t I ) - X(t 3 ) I1>~ 8i2 /4 (2.18) 

Continuing the above steps, we obtain the sequence of points tk • [0, t*) and the subscripts ik e J (k = 1, 2 . . . .  ) 
such that 

x(t) E ~stk (xik )Vt E [t2/~_ 1 , t2k) (2.19) 

and, like (2.18), II x(t2k-1) -X(/2k+l) II I> ~5ik+/4. The last inequality and the choice of the numbers 11 and x ensures 
that t2k_~ - t2k+~ 1> rl > x. Hence, if t* < +oo, this sequence is finite and terminates so that, as described above, 
the theorem is proved in this case also. (This situation may correspond to the departures of the trajectory from 
the set M~°.) If t* = +oo, then tk --+ +oo, and hence for any t e [0, +~)  we obtain a number k such that inclusion 
(2.19) and, of course, (2.7) also, are satisfied. 

L e m m a  2.3. For  any x > 0 and for a finite covering of  the set M by the F-sectors f)Li(xi)(i ~ I A= 
(1 . . . . .  m)) ,  a x0 ~ (0, -c) and 50 > 0 exist such that any solution x( t )  possesses the proper ty  

x(O) e M 5° ~ X(Xo) e { u ~ z i  (Xi ) : i  • 1} (2.20) 

Proof. Suppose T > 0 is arbitrary and the F-sectors f~z~ (xi) form a covering of the set M, i.e. M C {Uf~zi (xi): 
i • 1}. Then, obviously, the set of open spheres Szi(xi)(i •-1) is also a covering of M. Taking into account the com- 
pactness of the set M, we can choose a number 13 > 0 so small that the following conditions are satisfied 



Stability of the set of equilibrium positions of autonomous mechanical systems 867 

l~<min{~,i:i•/}, M fl t::: {uS~.i_f~(xi):i • l i 

For each F-sector tax~ (xi) and each of the numbers x and 13, by Lemma 2.1 numbers T~. e (0, ~) and 13~- e (0, 13) 
exist such that property (2.1) is satisfied forx = xi, 8 = hi, Xo = x~., 13o = ~ .  

We put 80 = min {13~: i e I} and suppose x(t) is a solution such that x(0) ~ M ~0. Thenx(0) e F ~  (xi) for all 
i e I andx(0) e Sx,_~(xi) for a certain i ~ L Hence, it follows from (2.1) that x(x0) ~ F(xi)ASa(x(O)) CF(xi)nSx~ (xi) 
for a certain i e L Property (2.20) has thereby been established and the lemma is proved. 

3. T H E O R E M  ON S T A B I L I T Y  

For a real-value function V, defined in a certain neighbourhood of the set M and numbers 1,, we will 
put E(V < -/) A_ {x: V(x) < "t}. We define the set E(V = T) similarly. We denote byD*+V(x)  the upper 
right derivative of the function V, by virtue of Eq. (1.4). 

Theorem 3.1. Suppose that in a certain neighbourhood M p, p > 0 of the set M a non-negative locally 
Lipschitz function V(x) is defined with the following properties: 

1. V(x) = O ¢:> x • x • M; 
2. for any F-sector f2s(x ) with vertexx • M and radius 8 < p the inequalityD*+V(x ') <~ 0 is satisfied 

for all x' e f~8(x). 
Then, for any e > 0 and x > 0 a 8 > 0 and a finite covering of the set M by the F-sectors f~& (xi), 

xi • M( i  • J) exast such that any solutmn x(t) with mltml con&txons x(0) e M~is defined for all t >/0 
and satisfies the conditions 

Vt  >>- O, x(t)  ~ M t,  Vt  >~ "t, x(t) E {Ufls, (xi) : i E J} (3.1) 

Proof. Suppose e • (0, p) and • > 0 are arbitrary. By Lemma 2.2, eo e (0, e), r-sectors f~. (xi) and 
numbers ~,i e (0, 8i)(i • J) exist such that the relation (2.6) ~ (2.7) is satisfied. Without loss of g~nerality 
we will assume that the set M ~° belongs to f l  together with its closure, since, by virtue of the compactness 
of M, this can always be achieved due to the arbitrariness of e > 0. 

For all 11 • (0, e0) a V > 0 exists such that 

E(V < " t )NM ~° c M n (3.2) 

In fact, we will assume the opposite. Then, r I e (0, e.0), sequences of numbers Ti ~ +0 and points xi ~ E 
(V < Yi) A M *o exist such that xi ~ M n. Since the set M ~° is bounded, we can separate a converging subsequence 
from the sequence {xi}. Without loss of generality we will assume that xi -* Xo. By virtue of the continuity of the 
function V, we obtain V(xo) = 0 and then x0 e M. But, on the other hand, x~ ~ M n and therefore x0 ~ M. The 
contradiction obtained proves relation (3.2). 

We put the number r I = %/2 and for the ~t corresponding to it we put W = E ( V  < ~) t3 M ~°. 
It follows from (2.5) that the F-sectors D.~. (xi) form a covering of the set M. Then, by Lemma 2.3, 

x0 • (0, x) and 80 > 0 exist such that condition (2.20) is satisfied. Taking into account the compactness 
of the set M, the local boundedness of the function f and the arbitrariness of x > 0, we conclude that 
the numbers 8o and x0 can be so small that the inclusion M ~° C Wis satisfied, and any solutionx(t) with 
initial condition x(0) e M ~° is defined and the condition x(t) e W is satisfied for all t • [0, x0]. Then, 
for a certain subscript i 

xCxo) ~ Wfqf~xl (x i) (3.3) 

Ifx(t) • Wfor  all t • [0, to), then, by the theorem on the continuity of solutions [6] and conditions 
(3.3), (2.6) and (2.7) we have to = +oo, and inclusions (3.1) hold, and hence the theorem is 
proved. 

We will assume that a t • [0, to) exists such that x(t) q~ W. We then obtain the least value of tl • 
[0, to) such thatxl  = X(tl) • aW. It follows from the definition of the set Wand the condition W C M e'O/2 
that xl ~ E ( V  = 3'), and then, from the properties of the function V, we obtain 

Vt E [0, h), V(x(t)) <~ V(x z ) = Y (3 .4)  

But x(t) • W C E ( V  < y) for all t • [0, tl) and hence V(x(t)) < T when t • [0, tl), which contradicts 
(3.4). The contradiction obtained completes the proof of the theorem. 
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Note that in Theorem 3.1 not only in the stability of the set M asserted (i.e. x(0) ~ M ~ ~ Vt t> 0, 
x(t) ~ AP), but also the satisfaction of the second condition (3.1), from which it follows that the 
function V(x(t)) does not increase for all t I> x along any solution x(t) with initial condition x(0) e M ~. The 
latter, together with the principle of invariance, can be used to prove the asymptotic stability of the setM. 

Theorem 3.2. Suppose the conditions of Theorem 3.1 are satisfied and, in addition, D* ÷ V(x') < 0 for 
allx' e f~(x)~ / .  Then, the set M is asymptotica!ly stable (i.e. M is stable and d(x(t), M) ---> 0 as t ---> +oo 
for any solution x(t) with initial value x(0) e M°). 

Proof. For the solutionx(t) we will denote the o~-limit sets by A+(x). Since the function V(x(t)) does 
not increase for all t > x, by the results obtained is [4], the following condition is satisfied 

A+(x) c E(D*+V = 0) (3.5) 

Supposex0 ~ A+(x)VI4. Then a sequence t~ ~ +oo exists such thatx(tk) --->Xo. By virtue of the second 
inclusion of (3.1) we obtain the F-sector f2~. (xi), so that Xo ~ f~si(xi). But then D*+V(xo) < O, 
which contradicts (3.5). The contradiction obtained shows that A+(x) C M, whence the assertion of  the 
theorem follows. 

Theorem 3.3. Suppose the conditions of Theorem 3.1 are satisfied and, in addition, the set 
E(D*+V = 0) N M p does not contain closed semi-invariant sets, which do not intersect with M and 
which belong to some covering of the set M by the F-sectors. Then the set M is asymptotically stable. 

Proof. Using condition (3.5), the semi-invariance and closedness of the set A ÷ (x) (see [4]) and Theorem 
3.1, we conclude that with the above assumptions A+(x) A M ¢ 0 .  Then, a sequence tk ---> +oo exists 
such that x(tk) ---> Xo ~ M. Then, it follows from the stability of the set M that d(x(t), M) --> 0 as 
t --, +0% and the theorem is proved. 

Theorem 3.4. Suppose M is a stable compact set of equilibrium positions of Eq. (1.3), such that some 
of its neighbourhood M p contains no equilibrium positions which do not belong to M. We will assume 
that on the set M 9 locally Lipschitz functions Vi(x) (i ~ / )  are defined so that for any F-sector f~(x) 
with ver texx ~ M and radius 8 e (0, p) the following conditions are satisfied: 

1. D*+V,.(x ') <- 0 for allx' e ~ ( x )  and i e I; 
2. D.d(X)N E C {x :x = (q, t)), q = 0}, where E a_. {¢qE(D.+Vi = 0): i  ~ I}. 
Then M is asymptotically stable. 

Proof. It follows from the stability of the set M and Lemmas 2.2 and 2.3 that f a i r l y m a l l  numbers 
6 > 0 and x > 0 exist such that, for any solution x(t) with initial condition x(0) e M ° for all t > x, 
the second condition of (3.1) is satisfied for a certain covering of the set M by the F-sectors fl,i(xi). 
Hence, with the assumptions made, the functions Vi(x(t)) do not increase when t > x. Then, A+(x) C E, 
and hence, taking (3.2) into account we conclude that for any point x = (q, q) ~ A+(x) the equation 
q = 0 is satisfied. It now follows from the semi-invariance of the set A+(x) that it consists of equilibrium 
positions. Consequently, A+(x) C M, and hence we obtain the assertion of the theorem. 

4. E X A M P L E  

Consider a plane mechanical system consisting of a piston B of mass ml, moving with friction along a horizontal 
rectilinear tube Ox and regarded as a point mass with coordinatesx = ql, and a heavy absolutely rigid body having 
a mass m 2 and moment of inertia Jc about the centre of mass, rotating with friction around a cylindrical hinge, 
attached to the piston. The distance from the piston to the centre of mass C is r. The angle of deviation I~ of BC 
from the normal to Ox, directed downwards, is taken a s  q2. We will assume that forces of elasticity of a spring with 
coefficient of elasticity c and with a point of unstressed state x = 0 acts along Ox. The friction coefficients fl in the 
piston andrE in the hinge are assumed to be constant, and m = rnl + mE, J = Jc + m2 r2. This example is a modified 
form of the system in [3] (see also [4]): we assume that the elastic force of the spring acts along the Ox axis. 

The equations of motion of the system in Lagrangian form are written as follows: 

m~+m2rcos~ = m2rt~ 2 sin[~- cx + QI r 

m 2 reos[~ + J~ = -m 2grsin[~ + Q2 T (4.1) 
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The generalized friction forces are found from (1.2) for s = 1, 2, where 

I N I !=1 m2r(~sinl~ +1~ 2 eosl~)+ mg I 

IN 2 I=m2l(J~+~eos~-r~2sin~)2+(r~sin~+r~2eos~+g)2])~ 

Q~o = m2r([~cos~_[~2 sinl~)+cx (~ = 0, £ = 0) 

Q~O = m2r(J~eosl ~ + gsin I~) (1~ = 0, ~ = 0) 

The sufficient conditions for Eqs (4.1) to be solvable for q = (J?, 1~) and for them to be reducible to the form 
(1.3) are inequalities (6.4) from [3]. These inequalities ensure that Lemma 1.1 holds and also the existence of right- 
hand sided solutions of Eq. (4.1) and their general properties, which were used in this paper (the continuity and 
semi-invariance of the co-limit sets). 

The set of equilibrium positions for system (4.1) has the form 

M={(q,q): ,~=0,  [~=0, f lmg>~clxl ,  f2 ~r ls in~l}  

We will assume that f2/r < 1. In this case M is a set of rectangles in the (x~13) plane. We will determine 13~ from 
the conditions: sin 13t~ = f2Jr, 0 < 13/z < r~/2 and putx~ = flmg/c. The set Mt~ = {(q, q) ~ n: l  xtz I, I 13 1 <- 13t~} will be 
called the lower stagnation zone. 

We will put 

[o, Ix I~ xtz' w2 =[o, " 113 I~ 13~ 

T= I~(mx2+2m2r~co$l~+Jl~2 ), V = T + W  1 +W 2 

w I = J ~ l N  II1.~1, w2=f21N211~l 

The function Vis positive definite with respect to the sets Mtz in a certain fairly small neighbourhood of it. 
We will write the set F for the points (Xo, [30, Xo, 13o) = (qo, ilo) ~ Mtz and values of the right derivative D+Vby 

virtue of system (4.1) on each F-sector f~a(q0, q0). We note initially that when (q0, q0) ~ Mtz we have 

,~o =o, #o=O 

INil=mg, IN21=m2g, IQT°l=clx l ,  IQ~°l=m2rglsin~l 

Taking into account the fact that when I 1~0 I = 13t~ the signs of 13 and sin 13 are the same in a fairly small 
neighbourhood.of the point 130, we will consider the following possible cases (the quantity D+Vcorresponds to the 
points (x,.~, 13, 13) = (q, q) ~ Oa(qo, q0)) 

1. Ix0 1 < xt~, I 13o I < 13t~ ((q0, qo) is an internal point of the rectangle M~); then 

r(qo, qo)={(q, #):.~=0, I~=o}, D+V=0 

2. Ix 0 I < xt~, I 1301 < 13~ or 11301 < 13t~, Ix0 [ < xt~ (the sides of the rectangle M~) without the vertices; then 

r(qo, qo)={(q ,4) :~=0,  I~1~o <~0} 

J'-w 2, 113 I> 13tz D+V 
[_w2 +ra~grlsin1311~l, 1~l<~131z 

3. or, correspondingly 

r(qo, qo)=[(q,q):l~=o, ~xo ~<o1 

- - W  I , D + V = { _ w i + c l x l l i l  ' Ixl>xtz 
I x I<~ x k 

4. Ix01 = Xtz, 1130 I = 13/z (the vertices of the rectangle Mtz); then 

r(qo, qo) = {(q, #): I~13o <~ o, kx o ~< o} 

t 
- - W  I - -  W 2  , 

D+V= - w  l - w  2 +clx l lk l ,  
- w  I - w 2 + m2 gr I sinl~ II ~ I, 
- w  i - w 2 + c lx  II J l +ra2 gr l sin [$ II [~ I, 

113 I> 13/z, Ixl>xtz  
Ixl<~Xlz, I I~1> [~/z 

1131 ~< 13tz, Ix l>xtz  
1131 <~ I~/z, I x l ~ x t z  
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Hence, we have nine possible forms for the sets F, and within each F-sector the generalized velocities J, 13 either 
vanish or retain signs opposite to the sign of x0 and 130, respectively. 

In case 1 the sign definiteness of D+V(q, il) will not be needed in the further analysis. In cases 2 and 3 
the sign of D÷V is determined by the ratios of the values of the functions fllNll and clxl, A[N21 and 
mgr l  sin 13 I on the set F(q, q). It is easy to see that the condition D+V <- 0 will be satisfied (within the F-sector), 
if, for any point (q0, q0) e Mtz along each solution of Eq. (4.1) with values in the F-sector fls(q0, q0), the following 
inequality is satisfied 

D+[~sin[~+ ~ 2 cosl3 ~ 0 (4.2) 

In fact, in this case it follows from the inequality Ix I ~< xt~ that 

Ji INI I ~ f l m g ~ c l x l  

and it follows from the inequality [ 13 [ ~< 13t~ that 

f2 IN2 I~ f2m2g ~ ra2grlsin~l 

whence, taking into account the form of D+Vwe also obtain D+V ~ O. 
In order to prove (4.2) we will assume the opposite. Then, since the function D+~(t) is continuous from the 

right [6, Theorem 3], the following inequality is satisfied 

D+l~sinl3 + ~2 cos13 < 0 (4.3) 

in a certain small interval [0, ct). Integrating (4.3) we obtain 

[~(t) sin 13(0 - 1~(0) sin 13(0) < OVt e (0, a) 

I l l  130 1 < 13tz, we have [~(t) = 0 for sufficiently small t > 0, and, consequently, inequality (4.2) is satisfied. Hence, 
inequality (4.3) will only be satisfied when I [30 1 = 13tz. We can then assume that sin 13(0 ¢ 0. 

Suppose, to fix our ideas, that sin 13(0 > 0. Then 13(0 ~< 0 and, consequently, sin 13(0 is a non-i.ncreasing function. 
Hence, the inequality sin 13(0 ~< sin 13(0) is satisfied, from which, if we take into account that 13( 0 ~< 0, we obtain 
the inequality 

I~(O) sin 13(t) ~> ~(O)sin 15(0) ~> ~(Osin 15(t) 

Consequently, l~(0) ~> [~(t), whence we obtain D+~(0) I> 0. But then inequality (4.3) is not satisfied when t = 0, 
which contradicts the above assumption. 

The case sin I~(t) < 0 is considered in exactly the same way and also leads to a contradiction with (4.3). 
Hence, for Eqs (4.1), the sets M~z and the functions V satisfy all the conditions of Theorem 3.1, according to 

which the lower stagnation zone is stable. 
In order to investigate the asymptotic stability of the set Mu, using Theorem 3.4 we consider the functions 

II1 = x2/2, II2 = 132. Then, for any (q0, q0) ~ Mu and F-sectors f2s(q0, q0) we have 

D+VI = xJc<~O, D+V2 =[~ <~O 

. Ifx0 = 0 for 130 = 0, then for sufficiently small 6 > 0 for all (q, q) e f~s(q0, q0) we haveJ = 0, or, correspondingly, 
13 = 0. If  x0 ¢ 0 and 130 ¢ 0, we have 

? 

t t ...I..._ =o,/i,~ ° 

Fig. 1. 
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E(D+VI = O)NE(D+V2 = 0) = I(q, 4): ~ = 0, I~ = 0} 

Hence, always 

f~8(qo, qo)NE(D+VI = O)NE(D+V2 = 0) c {(q, 4 ) :k  = 0, 1~ = 0} 

and, by Theorem 3.4, the set Mlz is asymptotically stable. 
In conclusion we note that the second condition of (3.1) of Theorem 3.1 and the relation (2.6) ~ (2.7) of Lemma 

2.2 enable us to give clear geometrical interpretations of the behaviour of the motions in the region of the set M 
of equilibrium positions (both stable and unstable), since the behaviour of the trajectories within the F-sector can 
be simplified considerably. For system (4.1) the four-dimensional space of the variables (x, 13,,~, 13) is a phase space. 
Figure 1 gives a fairly complete representation of the behaviour of the trajectories in the region of the lower 
stagnation zone (we only show the right-hand part of the (x, 13) plane, in the left-hand part the set Mt~ and the 
trajectories are symmetrical about the Ox axis). For the F-sectors with vertices inside the rectangle Mu only steady 
motions are possible. 

This research was suppor ted  by the Russian Foundat ion  for Basic Research (96-01-00327). 
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